COMPLEX VARLABLES AND PARTLAL DIFFERENTLAL EQUATIONS
 (3140610)

TUTORLAL BOOK

Government Engineering College- Dahod

CERTIFICATE

This is to certify that Mr./Ms.
Enrolment No. \qquad of Second Year B.E., Semester

Branch \qquad has satisfactorily completed his/her term work in course of Complex Variables \& Partial differential Equations
(3130005) for the academic year 20......- 20..... .

Date of Submission:

Signature of Faculty

Syclabus

Complex Variables and Partial Differential Equations

(Code: -3140610)

Complex Numbers and Analytic Functions:
Weightage:-28\%

- Polar Form of Complex Numbers,
- Powers and Roots,
- Complex Variable - Differentiation : Differentiation,
- Cauchy-Riemann equations, analytic functions, harmonic functions, finding harmonic conjugate
- Elementary analytic functions (exponential, trigonometric, logarithm) and their properties
- Conformal mappings,
- Mobius transformations and their properties

Complex Variable Integration \& Power Series:
Weightage:-20\%

- Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (without proof),
- Liouville's theorem and Maximum-Modulus theorem (without proof)
- Sequences, Series, Convergence Tests, Power Series, Functions Given by Power Series, Taylor and Maclaurin Series, Uniform Convergence

Residues \& Laurent's series

Weightage:-14\%

- Laurent's series
- Zeros of analytic functions, singularities,
- Residues, Cauchy Residue theorem (without proof), Residue Integration Method, Residue Integration of Real Integrals

Partial differential equations:
Weightage:-14\%

- First order partial differential equations,
- Solutions of first order linear and nonlinear PDEs, Charpit's Method

Homogeneous and nonhomogeneous linear PDE:
Weightage:-24\%

- Solution to homogeneous and nonhomogeneous linear partial differential equations second and higher order by complementary function and particular integral method.
- Separation of variables method to simple problems in Cartesian coordinates, second-order linear equations and their classification,
- Initial and boundary conditions,
- Modeling and solution of the Heat,
- Wave and Laplace equations.

DEPARTMENT OF GENERAL Action Plan For Students

- Minimum 75\% attendance is compulsory for all the students for appearing in internal theory and practical exams
- Students must inform respective faculties if they remain absent continuously for particular reason that means if students remain absent for medical reason he/she needs to submit medical report.
- Every student must complete their assignment, tutorial, journal in given time. Students have to solve the examples from the previous question papers(which have been uploaded on college website) related to chapter and get it signed on same date. It will be not signed if the students failed to complete it in the given time limits.
- Grading system for tutorial, assignment, journal will be implemented for continuous evaluation of the students.
- Chapter wise exam will be taken and it will be compulsory for all students.
- Student must remain present with complete assignment, tutorial, journal and project on the scheduled date and time of internal submission. After scheduled time they will not be entertained at any cost.
- Queries related to subject will be solved during 10:30 am to 12:30 am every working Saturday. So students may remain present for queries

Index

Sr. No.	Tutorial No.	COs	Marks	Date	Signature
1.	Tutorial 01	CO 1			
2.	Tutorial 02	CO2			
3.	Tutorial 03	CO 2			
4.	Tutorial 04	CO 1			
5.	Tutorial 05	CO 2			
6.	Tutorial 06	CO 3			
7.	Tutorial 07	CO 3			
8	Tutorial 08	CO 4			
9	Tutorial 09	CO 4			

Tutorial 01

Complex numbers, polar form \&己 roots

Formulas

- Complex Number $z=x+i y$ where $x=\operatorname{Re}(z)$ and $y=\operatorname{Im}(z)$
- $i^{2}=-1$
- If $\operatorname{Re}(z)=0$ then $z=$ iy is called purely imaginary numbers,
- If $\operatorname{Im}(z)=0$ then $z=x$ is called purely real number
- $\bar{z}=x$ - iy is called complex conjugate of z
- $z \bar{z}=(x+i y)(x-i y)=x^{2}+y^{2}$
- To calculate principal value of argument
(i) If $x>0, y>0 ; \operatorname{argz}=\tan ^{-1} \frac{y}{x}$
(ii) If $\mathrm{x}<0, \mathrm{y}>0 ; \arg \mathrm{z}=п-\tan ^{-1}\left|\frac{y}{x}\right|$
(iii) If $\mathrm{x}<0, \mathrm{y}<0 ; \operatorname{argz}=\tan ^{-1}\left|\frac{y}{x}\right|+\pi$ or $-\pi+\tan ^{-1}\left|\frac{y}{x}\right|$
(iv) If $\mathrm{x}>0, \mathrm{y}<0 ; \arg \mathrm{z}=-\tan ^{-1}\left|\frac{y}{x}\right|$
- De'moivre's Theorem: For any real number

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

- Distinct complex roots of a complex number $z=r(\cos \theta+i \sin \theta)$ are

$$
[r(\cos \theta+i \sin \theta)]^{\frac{1}{n}}=r^{\frac{1}{n}}\left(\cos \left(\frac{2 \mathrm{k} \pi+\theta}{\mathrm{n}}\right)+\operatorname{isin}\left(\frac{2 \mathrm{k} \pi+\theta}{\mathrm{n}}\right)\right), \mathrm{k}=0,1,2, \ldots, \mathrm{n}-1 .
$$

- Euler's formula: $e^{i x}=\cos x+i \sin x$
- Logarithm of a Complex number:

$$
\log (x+i y)=\log \left(\sqrt{x^{2}+y^{2}}\right)+i\left(2 n \pi+\tan ^{-1} \frac{y}{x}\right)
$$

Q-1a. Express $\sqrt{3}-i$ into polar form
Q-1b. Determine and sketch the region : (i) $0 \leq \arg z \leq \pi / 4,(i i)|2 z+3|>4$, Which of them are domains?
$\mathrm{Q}-1 \mathrm{c}$. Find the moduli and argument of $z=\frac{1-i}{1+i}$.
Q- 2. State De'Movier's formula. Find $\arg \left[\frac{i}{-2-2 i}\right]$
Q-3. Find the real and imaginary parts of $f(z)=\frac{3 i}{2+3 i}$.
Q-4.State De - Movire's formula and hence evaluate $(1+i \sqrt{3})^{100}+(1-i \sqrt{3})^{100}$.
Q-5. If $x_{r}=\cos \frac{\pi}{2^{r}}+i \sin \frac{\pi}{2^{r}}$, prove that $x_{1} \cdot x_{2} \cdot x_{3} \ldots \ldots \infty=-1$.
Q-6.Find real and imaginary part of $(-1-i)^{7}+(-1+i)^{7}$.
Q-7.Find the distinct values of $z=(1+i)^{\frac{1}{3}}$.
Q-8. Prove that the $n^{\text {th }}$ roots of unity are in geometric progression. Also show that their sum is zero.

Q-10.Separate $\tan ^{-1}(x+i y)$ into real and imaginary parts.
Q-11.Expand $\sin ^{5} \theta \cos ^{3} \theta$ in terms of sines of multiples of θ.
Q-12. Let $z=x+i y$. Showing details, find, in terms of x and y : (i) $\operatorname{Im}\left(\frac{1}{z}\right)(i i) \operatorname{Im}\left(\frac{1}{\bar{z}^{2}}\right)$
Q-13. Find all the values of $\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{3 / 4}$. Also find their product.

Remarks:

Signature of Faculty: \qquad Date: \qquad Grade: \qquad

Assignment 01

1. Find and graph all roots in the complex plane.
(i) $\sqrt[5]{-1}$ (ii) $\sqrt[4]{i}(i i i)(1-i)^{1 / 3}(i i i) \sqrt[3]{216}$ (iv) $\sqrt[8]{1}$
2. Find real and imaginar part of (i) e^{z} (ii) $\sin z$ (iii) $\sinh z$ (iv) $\cosh 3+4 i(v) e^{z^{2}}, e^{-\pi z}$.
3. Let $z=x+i y$.Showing details, find, in terms of x and y : (i) $\operatorname{Im}\left(\frac{1}{z^{2}}\right)(i i) \operatorname{Re}(1+i)^{16} z^{2}$ (iii) $\operatorname{Re}\left(\frac{z}{\bar{z}}\right), \operatorname{Im}\left(\frac{z}{\bar{z}}\right)$
4. Principal Value Ln z. Find Ln z when z equals (i)ei (ii) i (iii) $3-4 i$

Tutorial 02

Analytic Function \& Cauchy-Riemann Equation

Formulas

- Function of a Complex variable $w=f(z)=u(x, y)+i v(x, y)$
- $C-R$ Equations: $u_{x}=v_{y} \& u_{y}=-v_{x}$
- $C-R$ Equations in Polar form: $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \& \frac{1}{r} \frac{\partial u}{\partial \theta}=-\frac{\partial v}{\partial r}$
- Laplace's Differential Equation: $u_{x x}+u_{y y}=0$

Q-1.Check wether $f(z)=\frac{z}{z-1}$ is contionous or not.
Q-2. State Cauchy - Riemann Equations. Show that
$(I) f(z)=\sin z$ is everywhere analytic (II) $f(z)=x y+$ iy is nowhere analytic
Q-3.Show that $f(z)=\bar{z} \&|z|$ are not analytic functions.
Q-4.Show that the function $u=x^{3}-3 x y^{2}$ is harmonic and find the corresponding analytic function.
Q-5.If $u-v=\frac{e^{y}-\cos x+\sin x}{\cosh y-\cos x}$, find an analytic function $f(z)=u+i v$ with $f\left(\frac{\pi}{2}\right)=\frac{3-i}{2}$.
Q-6.Determine $f(z)=u+i v$, whose imaginary part is $\log \left(x^{2}+y^{2}\right)+x-2 y$.
Q-7. Verify whether $u(x, y)=x^{2}-y^{2}$ is harmonic or not? Also find out its harmonic conjugate.
Q-8. Separate real and imaginary parts of $f(z)=e^{z}$. Also prove that it is analytic everywhere.

Remarks:
Signature of Faculty: \qquad Date: \qquad Grade: \qquad

Assignment II

1. If $u=2 x(1-y)$, find an analytic function $f(z)=u+i v$
2. Separate real and imaginary parts of $f(z)=z e^{z}$. Also prove that it is analytic everywhere
3. Find the principal value.Show details.I. $(2 i)^{2 i} I I .(1+i)^{1-i} I I I .(1-i)^{1+i}$
4. Write Cauchy - Riemann in polar and and cartiesian form

Tutorial-03 Power Series \mathcal{Q} Radius of convergence

Formulas

- Power series in powers of $\left(x-x_{0}\right): \sum_{n=0}^{n=\infty} c_{n}\left(x-x_{0}\right)^{n}$ where $x_{0}=$ centre
- If the series $\sum_{n=0}^{n=\infty} z_{n}$ converges, then $\lim _{n \rightarrow \infty} z_{n}=0$
- Ratio Test: Let u_{n} be a positive term series and $\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=l$, then (i)If $l<1$ then series converges
(ii)If $l>1$ then series diverges
(iii)If $l=1$ then test fails
- Interval of convergence: $\left(x_{0}-R, x_{0}+R\right)$
- Taylor series always converges for $|z|<1$.
$\mathrm{Q}-1$. Check the convergence of $\sum_{n=1}^{n=\infty}(3+4 i)^{n} z^{n}$. Also find ROC \& IOC Q-2.Check the convergence of $\sum_{n=1}^{n=\infty}\left(\frac{(n!)^{2}}{(2 n)!}\right) z^{n}$. Also find ROC \& IOC
Q-3. Find the radius of convergence of $\sum_{n=1}^{n=\infty}\left(\frac{6 n+1}{2 n+5}\right)(z-2 i)^{n}$. Q-4. Check the convergence of $\sum_{n=1}^{n=\infty} \frac{n!}{n^{2}} z^{n}$. Also find ROC \& IOC Q-5. Check the convergence of $\sum_{n=0}^{n=\infty} \frac{z^{n}}{n!}$. Also find ROC \& IOC

Remarks:

\qquad
Signature of Faculty:
Date: \qquad Grade: \qquad

Assignment III

1. Find series expression for $\tan ^{-1} z$ at $z=0$
2. Check the convergence of $\sum_{n=1}^{n=\infty} \frac{(-1)^{n}}{n}(z-2 i)^{n}$. Also find ROC \& IOC

Tutorial 04 Conformal mapping \& Bilinear(Mobius) Transform

Formulas

- Conformal mappimng: $f^{\prime}(z) \neq 0$ at $z=z_{0}$.
- Identity mapping: $w=z$
- Translation: $w=z+\propto$
- Rotation: $w=z e e^{i \theta}$
- Magnification: $w=c z(c>0)$
- Inversion $w=\frac{1}{z}$
- Linear transformation $w=a z+b$
- The Joukowski Transformation $w=1+\frac{1}{z}$
- $w=e^{z}$
- Cross ratio: $\frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}{\left(z_{4}-z_{1}\right)\left(z_{2}-z_{3}\right)}$
- Bilinear transformation: $w=\frac{a z+b}{c z+d}$ where $a d-b c \neq 0$
- $\frac{w-w_{1}}{w-w_{3}} \cdot \frac{w_{2}-w_{3}}{w_{2}-w_{1}}=\frac{z-z_{1}}{z-z_{3}} \cdot \frac{z_{2}-z_{3}}{z_{2}-z_{1}}$

Q-1.Find the image of the infinite strip $0<y<\frac{1}{2}$ under the transformation $w=\frac{1}{z}$.
Q-2. Show that the mapping by $w=1 / z$ transforms circles and lines into circles and lines.
Q-3.Find the image of upper half of $z-$ plane under transformation $w=\frac{z}{1-z}$.
Q-4.Find the image of semi - infinite strip $x>0,0<y<2$ when $w=i z+1$.
Sketch the strip and its image.
Q-5.Find the bilinear transformation that maps the points $z_{1}=-1, z_{2}=0, z_{3}=1$
onto the points $w_{1}=-i, w_{2}=1, w_{3}=i$ respectively. Also find w for $z=\infty$.
Q-6. Find the bilinear transformation which transforms $z_{1}=\infty, z_{2}=i, z_{3}=0$ into $w_{1}=0$, $w_{2}=i, w_{3}=\infty$.
Q-7.Determine the region of the w - plane into which the region bounded by $x=1$,
$y=1, x+y=1$ is mapped by $w=z^{2}$. Show that angles are preserved.
Q-8.Find and sketch the image of $|z|=2$ and $|z|=1$ of z - plane under the transformation $w=z+\frac{1}{z}$.

Remarks:

Signature of Faculty:

Date:

\qquad
Grade: \qquad

Assignment IV

1. Find the bilinear transformation which maps the points $\mathrm{z}=1, \mathrm{i},-1$, in to the points $w=i, 0,1$
2. Determine the mobius transformation that maps $z_{1}=0, z_{2}=1, z_{3}=\infty$ onto $w_{1}=-1$, $w_{2}=-i, w_{3}=1$ respectively
3. Find the fixed points of $w=\frac{i z+4}{2 z-5 i}$.

Tutorial-05

Complex integration

Formulas Line integral in complex plane: $\int_{c} f(z) d z$

- Parametrization method: $\int_{c} f(z) d z=\int_{a}^{b} f[z(t)] z^{\prime}(t) d t$
- Cauchy - Integral Theorem: $\oint_{c} f(z) d z=0$ where a point z_{0} is lying outside C
- Cauchy Integral Formula: $\oint_{c} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)$ where a point z_{0} is lying inside C Q-1.Evaluate $\int_{z=0}^{z=1+i}\left\{\left(3 x^{2}+4 x y+3 y^{2}\right) d x+2\left(x^{2}+3 x y+4 y^{2}\right) d y\right\}$ (i)Along $x=y^{2}(i i)$ Along $y=$ x^{2}
Q-2.Evaluate $\int_{c} \operatorname{Re}\left(z^{2}\right) d z$ where C is the boundary of the square with vertices $0, i$,
$1+i, 1$ in the clockwise direction.
Q-3. Evaluate $\int z^{2} d z$ along the line joining the points $(0,0)$ and $(2,1)$.
Q-4. Evaluate $\int|z|^{2} d z$ where C is the boundary of the square with vertices $(0,0),(1,0),(1,1),(0,1)$
Q-5. Find $I=\oint \frac{\cos Z}{\left(z-\frac{\pi}{4}\right)^{3}} d z$, where $C:\left|Z-\frac{\pi}{2}\right|=1$
Q-6. Evaluate $\oint_{C}\left[\frac{3}{z-i}-\frac{6}{(z-i)^{2}}\right] d z$, where $C:|z|=2$.
Q-7.Evaluate $\oint_{c} \frac{e^{z}}{z^{2}+1} d z$ over the circle $|z|=2$
Q-8. Evaluate $\oint_{C} \frac{z^{3}-z^{2}+z-1}{z^{3}+4 z} d z$ counter clockwise around C, where C is $|z|=1$ and $|z|=3$.
Q-9.Evaluate $\oint_{c} \frac{z}{z^{2}+1} d z$, where C is the circle $(i)|z+1 / z|=2(i i)|z+i|=1$
Q-10.Evaluate $\oint_{c} \frac{z}{\left(9-z^{2}\right)(z+i)} d z$, where C is the circle $|z|=2$
Q-11.Evaluate $\oint_{c} \frac{1}{(z-1)^{2}(z-3)} d z$, where $C:|z|=2$
Q-11.Evaluate $\oint_{C} \frac{e^{z}}{z(1-z)^{3}} d z$ where C is $(i)|z|=\frac{1}{2} \&(i i)|z-1|=\frac{1}{2}$
Q-12.State the Cauchy's Integral Formula and its extension. Hence evaluate integral $\oint_{C} \frac{(1+z)}{z^{2}-2 z+5} d z$, where C is circle $|z+1+i|=2$.

Remarks:

Signature of Faculty: _ Date: \qquad
Grade: \qquad

Assignment V

1. Evaluate $\oint_{c} \frac{e^{2 z}}{z-\ln 1.5} d z$, where C is the square with vertices $(1,0),(0,1),(0-1)$ and $(-1,0)$
2. Verify whether $u(x, y)=e^{x} \cos x+x$ is harmonic or not? Also find out its harmonic conjugate.
3. Evaluate $\oint_{C} \frac{z^{2}+1}{z^{2}-1} d z$, if C is the circle of unit radius with center (I) at $z=1$ and (II) at $z=-1$.

Tutorial 06

Taylor series \& Laurent Series

Formulas

- $\frac{1}{1-z}=\sum_{n=0}^{n=\infty} z^{n}$
- $\frac{1}{1+z}=\sum_{n=0}^{n=\infty}(-1)^{n} z^{n}$
- Laurent series: $f(z)=\sum_{n=0}^{n=\infty} a_{n}\left(z-z_{0}\right)^{n}, r_{1}<\left|z-z_{0}\right|<r_{2}$
where $a_{n}=\frac{1}{2 \pi i} \oint \frac{f(z) d z}{\left(z-z_{0}\right)^{n}}, n=0, \pm 1, \pm 2, \ldots$.
Q-1. Expand $f(z)=\frac{z-1}{z+1}$ as a Taylor's series about the point $z=0$
Q-2.Expand $\frac{1}{z\left(z^{2}-3 z+2\right)}$ about $z=0$, for the region
(i) $0<|z|<1$ (ii) $1<|z|<2$ (iii) $|z|>2$

Q-3. Give two Laurent series expansions in powers of z for the function $f(z)=\frac{1}{\left[z^{2}(1-z)\right] \text { and }}$ specify the regions in which those expansions are valid.
Q-4.Expand $f(z)=\frac{1}{(z+2)(z+4)}$ in the region $(i)|z|<2(i i) 2<|z|<4(i i i)|z|>4$
Q-5.Expand $f(z)=\frac{z+3}{z\left(z^{2}-z-2\right)}$ in the region $(i)|z|>1$ (ii) $1<|z|<2(i i i)|z|>2$
Q-6.Expand $f(z)=\frac{1}{z(1-z)}$ in the region $(i)|z+1|<1(i i) 1<|z+1|<2(i i i)|z+1|>2$

Remarks:
Signature of Faculty: Date: \qquad
Grade: \qquad

Assignment VI

Q-1.Expand $f(z)=\frac{1}{z(z-1)}$ in the region (i) $0<|z|<1$ (ii) $0<|z-1|<1$
Q-2. Find Laurent'sseries expansion of $f(z)=\frac{1}{6-z-z^{2}}$ in (i)domian $|z|<2$ (ii)domain $2<|z|<3(i i i)|z|>3$.

Tutorial 07

Singuโarity \mathcal{L} Residue

Formulas

- $f(z)=\sum_{n=0}^{n=\infty} a_{n}\left(z-z_{0}\right)^{n}=a_{0}+a_{1}\left(z-z_{0}\right)+\cdots+\frac{a_{-1}}{\left(z-z_{0}\right)}+\frac{a_{-2}}{\left(z-z_{0}\right)^{2}}+\cdots$
that converges for all point near $\mathrm{z}=\mathrm{z}_{0}$ which is valid in some
deleted neighbourhood $0<\left|Z-Z_{0}\right|<R$
$\boldsymbol{a}_{-\mathbf{1}}=\boldsymbol{\operatorname { R E S }} \boldsymbol{Z}_{\mathbf{Z}=\mathbf{Z}_{\mathbf{0}}} \boldsymbol{f}(\mathbf{z}) O \operatorname{OR} \operatorname{Res}\left(\boldsymbol{f}(\mathbf{z}), \boldsymbol{z}_{\mathbf{0}}\right)$
- Residue at a simple pole: $\operatorname{Res}\left(f(z), z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)$
- Residue at pole of order $n: \operatorname{Res}\left(f(z), z_{0}\right)=\frac{1}{(n-1)!} \lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n} f(z)$

Q-1. Classify the singularities of the analytic function. In each of the following case, identify the singular point and its type with justification. $(i) \frac{z^{2}}{z+1}(z+1)($ ii $) \frac{\sin z}{z}$ (iii) $\frac{1-\cosh z}{z^{3}}$
Q-2.Find the residues of $f(z)=\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)}$ at each of its poles in the finite $z-$ plane. Q-3.Find residue of $f(z)=\frac{1}{(z-1)^{2}(z-3)} ; \operatorname{Res}(f(z), 1)$

Q-4.Find residue for $f(z)=\frac{5 z^{2}-4 z+3}{(z+1)(z+2)(z+3)}$ at each of its poles.
Q-5.Evaluate $\int_{C} \frac{z^{2} d z}{(z-1)^{2}(z+2)}$ where $C:|Z|=3$ by residue theory
Q-6.Evaluate $\int_{C} \frac{e^{2 z} d z}{(z+1)^{3}}$ where C is the ellipse $4 x^{2}+9 y^{2}=16$.
Q-7.Evaluate $\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta$
Q-8.Using the residue theorem, evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5-3 \sin \theta}$.
Q-9.Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5-3 \sin \theta}$.
Q-10.Evaluate $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$.

Remarks:
Signature of Faculty:
Date:
Grade: \qquad

Tutorial 08

Partial(DifferentialEquations

1. Find particular integral of $4 r+12 s+9 t=e^{3 x-2 x}$.
2. Find partial differential equation of i. $z=a x^{2}+b y^{2}$
ii. $z=(x+a)(y+b)$ iii. $z=z=(x-a)^{2}+(x-b)^{2}$
iv. Form the partial differential equation by eliminating the arbitrary function from $f\left(x^{2}+y^{2}, z-x y\right)=0$.
3. Find Complete integral of $(p+q)(z-p x-q y)=1$.
4. Determine complete integral of $p^{2} y\left(1+x^{2}\right)=q x^{2}$.
5. Determine complete integral of $p q=1$.
6. Determine complete integral of $\left(D^{3}-3 D^{2} D^{\prime}+2 D D^{\prime 2}\right) z=0$.

Remarks:

\qquad
Signature of Faculty: \qquad Date: \qquad Grade: \qquad

Assignment VIII

1. Find partial differential equation of i. $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$

$$
\text { ii. } z=a x+b y+a b
$$

2. Determine complete integral of $p x+q y=p q$.

Tutorial 09

Partial Differential Equations, Heat $\mathcal{L} \mathcal{W}$ Wave Equations

Q-1. Solve $3 u_{x}+2 u_{y}=0$, where $u(x, 0)=4 e^{-x}$ using the method of separation of variables.
Q-2. A bar with insulated sides is initially at temperature $0^{\circ} \mathrm{C}$, throughout. The end $\mathrm{x}=0$ is kept at $0^{\circ} C$ and heat is suddenly applied at the end $x=l$ so that $u_{x}=A$ for $x=l$, where A is a constant. Find the temperature function.
Q-3. Solve the partial differential equation using method of separation of variables. $u_{x}=4 u_{y} ; u(0, y)=8 e-3 y$.
Q-3.A tightly stretched string of length l with fixed ends is initially in equilibrium position. It is set vibrating by giving each point a velocity $v_{0} \sin ^{3} \frac{\pi x}{l}$. Find the displacement $y(x, t)$.

Remarks:

Signature of Faculty: __ Date:

Grade:

\qquad

Assignment IX

Q-1.Find the solution of the wave equation $u_{t \mathrm{t}}=\mathrm{c}^{2} \mathrm{u}_{\mathrm{xx}}, 0 \leq \mathrm{x} \leq \mathrm{L}$ satisfying the conditions: $u(0, t)=u(L, t)=0, u_{t}(x, 0)=0, u(x, 0)=\frac{x \pi}{L}, 0<x<L$.
Q-2.Using the method of separation of variables solve, $u_{x}=2 u_{t}+u$ where $u(x, 0)=6 e^{-3 x}$.

Reference Books:

1. Erwin Kreyszig, Advanced Engineering Mathematics, 8th Edition, John Wiley and Sons
2. Ian Sneddon, Elements of Partial Differential Equations, McGraw Hill.
3. G. F. Simons, Differential Equations, Tata MacGraw Hill, New Delhi, 1972.
4. J. W. Brown and R. V. Churchill, Complex Variables and Applications, McGraw Hill.
5. S.Ponnusamy, Foundation of Complex analysis, Narosa publication, 1995.
6. T. Amaranath, Partial Differential Equations, Narosa Publ.

Useful link:

- https://ocw.mit.edu/resources/res-18-008-calculus-revisited-complex-variables-differential-equations-and-linear-algebra-fall-2011/part-i/
- https://ocw.mit.edu/resources/res-18-008-calculus-revisited-complex-variables-differential-equations-and-linear-algebra-fall-2011/part-ii/
- https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/

